
Applied Geography 132 (2021) 102476

0143-6228/© 2021 Elsevier Ltd. All rights reserved.

Improving estimates of neighborhood change with constant 
tract boundaries 

John R. Logan a,*, Wenquan Zhang b, Brian J. Stults c, Todd Gardner d 

a Department of Sociology, Box 1916, Brown University, Providence RI 02912, USA 
b Department of Sociology, University of Wisconsin, Whitewater WI 53190, USA 
c College of Criminology and Criminal Justice, Florida State University, Tallahassee, FL 32301, USA 
d U.S. Census Bureau, 4600 Silver Hill Road, Washington DC 20746, USA   

A R T I C L E  I N F O   

Keywords: 
Census tract 
Differential privacy 
Interpolation 
Harmonization 

A B S T R A C T   

Social scientists routinely rely on methods of interpolation to adjust available data to their research needs. 
Spatial data from different sources often are based on different geographies that need to be reconciled, and some 
boundaries (e.g., administrative or political boundaries) change frequently. This study calls attention to the 
potential for substantial error in efforts to harmonize data to constant boundaries using standard approaches to 
areal and population interpolation. The case in point is census tract boundaries in the United States, which are 
redefined before every decennial census. Research on neighborhood effects and neighborhood change rely 
heavily on estimates of local area characteristics for a consistent area of time, for which they now routinely use 
estimates based on interpolation offered by sources such as the Neighborhood Change Data Base (NCDB) and 
Longitudinal Tract Data Base (LTDB). We identify a fundamental problem with how these estimates are created, 
and we reveal an alarming level of error in estimates of population characteristics in 2000 within 2010 
boundaries. We do this by comparing estimates from one of these sources (the LTDB) to true values calculated by 
re-aggregating original 2000 census microdata to 2010 tract areas. We then demonstrate an alternative approach 
that allows the re-aggregated values to be publicly disclosed, using “differential privacy” (DP) methods to inject 
random noise that meets Census Bureau standards for protecting confidentiality of the raw data. We show that 
the DP estimates are considerably more accurate than the LTDB estimates based on interpolation, and we 
examine conditions under which interpolation is more susceptible to error. This study reveals cause for greater 
caution in the use of interpolated estimates from any source. Until and unless DP estimates can be publicly 
disclosed for a wide range of variables and years, research on neighborhood change should routinely examine 
data for signs of estimation error that may be substantial in a large share of tracts that experienced complex 
boundary changes.   

1. Introduction 

Social scientists routinely rely on methods of interpolation to adjust 
available data to their research needs. Spatial data from different sour-
ces often are based on different geographies that need to be reconciled, 
and some boundaries (e.g., administrative or political boundaries) 
change frequently. This study calls attention to the potential for sub-
stantial error in efforts to harmonize data to constant boundaries using 
standard approaches of areal and population interpolation. The case in 
point is census tract boundaries in the United States, which are redefined 
before every decennial census. We study the accuracy of standard 
methods of harmonizing such data over time to deal with changing 

boundaries. Previous research by Logan et al. (2016) took advantage of 
the public release of population counts from the 2000 Census using 2010 
boundaries, showing that estimates using current methods from the 
Geographic Information Systems (GIS) toolkit were close to the true 
values in most tracts. We confirm that finding here, drawing on the 
original confidential 2000 data in a Federal Statistical Research Data 
Center (FSRDC). We also compare the “true” and estimated values of a 
selected set of other population characteristics. We find first that there is 
much more error in these estimates than in estimates of simple popu-
lation counts. Second, an alternative approach that injects random noise 
into the true values, so that they can be publicly disclosed, provides 
considerably more accurate estimates. And third, there are identifiable 
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conditions under which the interpolation-based tract estimate is more 
prone to error and therefore requires closer attention by researchers. 

2. Geographical approaches to adjusting boundaries 

Geographers have devoted much attention to the effect of discrep-
ancies in the boundaries of the areal units used for the analysis of spatial 
data. A typical situation is when data are being drawn from different 
sources. For example, population data may be reported in census tracts, 
while crime data may be reported in police precincts, or election data in 
voting districts, or school data in school attendance zones. Another sit-
uation, the one we tackle here, is when there are changes over time in 
the boundaries of the same units (Martin et al., 2002). In either case the 
general problem is how to estimate data for the same geographic unit so 
that information from different sources or times can be analyzed 
together. To do this, data from a source using one zonal system needs to 
be transferred to a target zonal system for which other data are reported. 

A sophisticated areal interpolation approach is to refine the source 
data to a more detailed or finer spatial scale and then re-aggregate these 
data to the target zones. Bracken and Martin (1995) describes a surface 
modeling technique to interpolate the source data into an underlying 
smooth surface that can then be aggregated to the target zones. The 
surface can be estimated by point-based interpolation methods using 
centroids as the representatives of zones (Bracken & Martin, 1989; 
Martin, 1989) or other statistical methods (Kyriakidis, 2004; Kyriakidis 
& Yoo, 2005). If the surface has been accurately depicted, data from the 
surface can be aggregated to any desired areal unit. Unfortunately, this 
approach works best with variables such as air pollution that are likely 
to fit well to a smooth surface. With much population data, however, it is 
common to find discrete boundaries, such as certain major streets or 
highways that create discontinuities in the spatial distribution of 
different kinds of people. The “other side of the railroad track” is a 
prototypical example where there is a clear dividing line between 
communities based on social class or race. 

Another approach to improve areal interpolation is to use other 
sources of data about the distribution of the population in the source 
zone (Goodchild & Lam, 1980). This is referred to as dasymetric (or 
intelligent) interpolation (Maantay et al., 2007; Mennis, 2003; Reibel & 
Agrawal, 2007; Tapp, 2010; Sleeter & Gould 2007; Wright, 1936; 
Zandbergen & Ignizio, 2010; Eicher & Brewer, 2001). One such source is 
the identification of areas covered by water, which can reasonably be 
presumed to be unpopulated and discounted in areal interpolation. 
Remote sensing of land cover can identify other areas with no popula-
tion (Eicher & Brewer, 2001). Data on the road network can also be used 
as evidence of population density (Reibel & Bufalino, 2005; Xie, 1995), 
although the presence of roads does not have a one-to-one association 
with the density of housing. There are two main problems with these 
sources. First, the computing demands are still very high for all but local 
studies. Second, remote sensing can more readily distinguish undevel-
oped from developed areas, but it can only approximate the populations 
in inhabited areas and it provides no information on other characteris-
tics such as household composition or socioeconomic status that many 
researchers rely on. 

3. Interpolation to harmonize census tract boundaries over time 

We consider here the specific case of harmonizing data for census 
tracts in the United States over time, and we point to a critical source of 
error in the available interpolated estimates. The earliest national source 
was the Neighborhood Change Data Base (NCDB, originally developed 
by the Urban Institute) that first became available in 2002 and was 
quickly adopted by most social scientists studying tract data in the 
1970–2000 period. Its great attraction was that for the first time it 
promised to allow researchers to reliably study neighborhood change 
between census years, unaffected by the Census Bureau’s routine revi-
sion of census tract boundaries that could either combine two or more 

tracts into one or divide a tract into two or more new ones. A study that 
made use of a special tabulation by the Census Bureau of tract popula-
tion counts in 2000 within 2010 boundaries (Logan et al., 2016) showed 
that there was considerable error in the NCDB estimates, but it rein-
forced confidence in the interpolation methods used by two other 
research teams. These are the Longitudinal Tract Data Base (LTDB) and 
an alternative developed by the National Historical Geographic Infor-
mation System (NHGIS). The analysis showed that the estimates from 
these latter two sources mostly had a very small margin of error. 

Yet for the first time we can now evaluate estimates for other vari-
ables, and these are problematic. To understand how interpolation 
works and where it may fail, we focus on the dasymetric interpolation 
approach used by the LTDB (for greater detail see Logan et al., 2014). 
The LTDB relies on a combination of area and population interpolation, 
using a land/water dichotomy as ancillary data. The researchers made 
use of the Topological Faces layer of the TIGER/Line shapefiles created 
by the Census Bureau (2011), which shows the intersection between 
blocks and tracts (and many other geographic layers) as defined in the 
2000 and 2010 censuses. The first step is to allocate reported tract level 
population counts in 2000 to blocks within the 2010 tract. A special 
situation is when part of a 2000 block was reassigned to one 2010 tract 
and another part to a different tract. Without information on the pop-
ulation in such block subdivisions (which are called fragments), the 
LTDB estimates the population in each fragment using areal weighting 
that is solely based on each fragment’s share of the block’s land area. It is 
then straightforward to aggregate blocks and fragments of blocks to the 
2010 census tracts. 

The next step is more susceptible to error. Having determined what 
share of each 2000 tract’s population (the source zone) should be allo-
cated to each 2010 tract area (the target zone), counts of all other 
population characteristics such as race, income, or educational attain-
ment are allocated according to those same population proportions. 
These are second-order estimates because they depend on first deter-
mining how to allocate total population, and then allocate subcategories 
of the population (e.g., by race or income) in the same proportions. This 
procedure assumes that all population subgroups are distributed evenly 
within the 2000 tract. This may be called the “uniform spatial distri-
bution” (or “spatial stationarity”) assumption. Goodchild et al. (1993, p. 
386) discussed this assumption as applied to interpolating population 
counts in terms of the degree of “homogeneous densities within 
reporting zones,” which are used as the basis for allocating population to 
target zones. Where “one can reasonably assume that the source-zone 
density is constant … [t]he derivation of the target-zone estimates is 
straightforward.” They acknowledge that “In general, however, homo-
geneous densities within reporting zones are exceptions rather than the 
rule.” 

For example, if interpolation methods call for half of the residents of 
tract Z in 2000 to be allocated to 2010 tract A and half to 2010 tract B, 
then equally half of Z’s affluent residents and half of Z’s poor residents 
would go to one of these 2010 tracts. The problem is that residents may 
actually have been quite segregated by income in 2000 within tract Z. 
And possibly the more affluent section of the tract was then incorporated 
into tract A and the poorer section into tract B in 2010. In that case, even 
if total population were allocated properly to A and B, the allocation by 
income would be severely distorted. Let us offer a concrete example that 
draws on analyses that we will present below, where we can compare 
the LTDB interpolated estimates to what we find to be closer to the 
“true” values. 

Fig. 1 depicts the case of Randall’s Island in New York City, an area 
that has been undergoing redevelopment since the 1970s. The island 
was enumerated as a single census tract in 2000, but split into two tracts 
in 2010. The problem then is to use data from the 2000 census to esti-
mate characteristics of each 2010 tract area in 2000. We present the 
LTDB estimates of each 2010 tract area’s characteristics in terms of the 
share with a college degree and the median income of residents in 2000. 
We also present alternative estimates based on aggregating the original 
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census microdata to the 2010 tract boundaries, with a small amount of 
random noise added to protect confidentiality. (This procedure is 
explained in detail below.) We refer to these as the “true” values. 

Aerial photography provided by Google Maps shows that one tract 
(238.02) includes a nursing home and a new apartment complex that we 
determined was constructed after 2000 and is otherwise uninhabited. 
The other tract (238.01) includes a variety of institutions, residential 
complexes, and commercial developments, and also subway and aerial 
tramway connections to Manhattan. Large errors arise in the LTDB es-
timates of income and education levels. Because of the assumption of 
spatial stationarity, the LTDB assigns both 2010 tract areas the same 
median income ($49,976) and college share (45.9%). The true values 
reveal that tract 238.01’s median income was $49,996 and its college 
share was 50.8%. But Tract 238.02, reflecting its nursing home popu-
lation, had a median income of only $17,388 and a college share of only 
13.1%. 

The stationarity assumption is also routinely applied in other appli-
cations of interpolation. Working with data over time, if we wish to 
estimate unobserved neighborhood characteristics in 2005, we may look 
for the midpoint between the observed data in 2000 and 2010. But if 
something unusual occurred during the decade – if the smooth curve 
from 2000 to 2010 were disrupted by a recession and foreclosure crisis – 
that estimate could be unreliable. When we assess the quality of public 
schools available to residents of individual census tracts, we may rely on 
measures for the school district that the tract is within. But if there is 
much variation among schools in that district, the district-wide measure 
may be a poor indicator. Nevertheless, in the absence of better alter-
natives, researchers do their best to accommodate to the constraints of 
available data sources, trusting that the unknown (and unnoticed) 
measurement error will not be misleading. Seldom can we test the ac-
curacy of these estimates. 

4. Assessing interpolation estimates and a new alternative 

We now turn to an effort to gauge the quality of the estimates 

provided by the LTDB. Records held in a Federal Statistical Research 
Data Center (RDC) allow us to determine the 2010 tract area where 
persons and households lived when enumerated in the 2000 Census, 
either for short form (intending to cover the full population) or long 
form (covering one in six households) samples. We can then aggregate 
these 2000 census records within 2010 geography to provide the best, 
unbiased estimate of the “true” tract characteristics. The analysis below 
reports the results of comparing these true values to the estimates from 
one widely used harmonized data source, the Longitudinal Tract Data 
Base (LTDB). These statistical summaries have been approved for release 
by the Bureau’s Disclosure Review Board and other layers of adminis-
trative review. 

We also evaluate an alternative approach. The Census Bureau has 
begun relying on noise injection to protect the confidentiality of census 
data that are released to the public domain. This is a controversial step 
with regard to the 2020 Census, due to the possibility that noise injec-
tion will also have negative effects on the use of census data for political 
redistricting and other applications where accurate counts of minorities 
in small areas are essential (e.g., Santos-Lozado et al., 2020). In our 
application we will show that DP has only small effects on average on 
estimates at the tract level. We apply noise injection to the true tract 
characteristics that we compiled in the RDC, and we refer to the 
resulting estimates as the “differential privacy” (DP) estimates. In the 
following tables we compare the DP estimates to the true values for a 
selected set of tract characteristics, parallel to our comparison with 
LTDB estimates. 

DP is described in some detail in a recent working paper by Chetty 
and Friedman (2019), which explains how their project could reveal 
results of mobility models for individual census tracts in the U.S. (see 
also earlier work by Dwork et al., 2006). Differential privacy is intended 
to ensure that virtually nothing more can be learned about an individual 
from a dataset than if that person’s record were absent from the dataset. 
The method involves introducing a fixed level of noise into the 
tract-level data (which can be counts, means, or medians), meeting a 
known “privacy threshold” that is represented by the statistic epsilon (ε). 

Fig. 1. Population estimates for tracts in Randall’s Island, NY, in 2000, based on 2010 tract boundaries (2000 boundary in yellow, 2010 boundaries in green). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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The lower the value of ε, the more noise is introduced and therefore the 
lower the accuracy of the noise-infused estimate, but the greater the 
protection of privacy. 

For counts the procedure is straightforward. Let Nt be the actual 
count (of white, young, college educated, etc.) in a tract and Nn the noisy 
version, and let L stand for the LaPlace distribution which is defined in 
stata. Then. 

Nn =Nt + L(0, 1 / ε)

This transformation is easily implemented in most statistical appli-
cations using a single command. The extra noise added or subtracted 
from the count has a mean of 0, and its “diversity” or variation is equal to 
the inverse of Ɛ – the larger Ɛ, the lower the range of the extra noise. For 
variables that are defined as a median (such as median income, which is 
included in our analysis) it turns out that the procedure is much more 
involved. The code is available on request. 

One of our goals is to make the DP estimates for all census tracts 
public so that researchers can evaluate them independently. The Census 
Bureau reviews the disclosure request, seeking to balance the accuracy 
of the estimates against the potential loss of privacy, both of which 
depend on the value of epsilon. We submitted calculations of the level of 
error (the Root Mean Squared Error, RMSE) of the true values in com-
parison to the DP estimates for various alternative levels of epsilon 
ranging from 1 (least accurate and most protected) to 9 (most accurate 
and least protected). Fig. 2 reports the mean RMSE from 200 separate 
runs (50 for median income), each beginning with a different random 
seed and therefore yielding different estimates. The figure includes re-
sults for the share of resident who were non-Hispanic white, college 
educated, under 18, and homeowner. Two other variables, total popu-
lation and median income, had very low values of RMSE even at an 
epsilon value of 1. Note that every increment to epsilon from 1 to 9 
improved accuracy, but to varying degrees. The error in college edu-
cation declined noticeably between 1 and 2, but then remained fairly 
high. The error in other variables declined sharply between 1 and 2, and 
continued decliing up to 4 before leveling off. Based on these plots, the 
Census Bureau approved release of DP tract estimates based on Ɛ = 3. 

The error in DP estimates is random, and we show below that it is 
relatively small. The error in LTDB estimates is larger and not random. 
But unless and until it is possible to calculate and receive approval for 
public disclosure of DP estimates for a much larger set of tract charac-
teristics, researchers must rely on interpolated estimates such as those in 
the LTDB for most purposes. Further, there are other situations where DP 
estimates are not possible, including estimates in 2010 boundaries for 

census data from 1990 and before, and data from non-census sources (e. 
g., health or crime statistics) that use pre-2010 boundaries (where the 
interpolation crosswalks provided by the LTDB allow researchers to 
harmonize other data). Hence it is important to be able to identify census 
tracts with greater likelihood of error in the estimates. 

Because the true values cannot be disclosed and in order to make this 
analysis as transparent and replicable as possible, we carry it out as a 
comparison between the LTDB and DP estimates (which are equivalent 
to the true values with a small random measurement error). The 
multivariate analyses reported below offer guidance about conditions 
associated with error in the LTDB estimates. Researchers can identify 
specific tracts with a probability of higher error by comparing the LTDB 
and DP estimates that we will disseminate for every tract. 

5. Research design 

This study includes all populated census tracts in 2000 and 2010 in 
the continental United States. These tracts can be categorized according 
to how their 2000 and 2010 boundaries compare. We treat as “un-
changed” those cases where the difference in boundaries between a tract 
in year 1 and year 2 involves less than 1 percent of the land area of the 
year 2 tract. There are three main categories of changes: consolidations, 
splits, and complex changes. Consolidation is when several 2000 tracts 
are combined into one 2010 tract. This creates no difficulties for anal-
ysis; the multiple tracts in 2000 can simply be combined into a single 
tract as defined in 2010. A split (one tract is divided into two or more) 
adds difficulty. Some rationale is needed to allocate data from one tract 
into two or more new ones formed within it. More complex changes, 
where two or more tracts in 2000 are reorganized into entirely different 
tracts in 2010, are more difficult to deal with. The incidence of these 
types of change is summarized in Table 1. 

A further complication occurs when blocks within tracts are sub-
divided. As noted above, the LTDB typically allocates population ac-
cording to the number of residents in each census block that is found in 
the 2010 tract. But if only part of a block is assigned to that tract, LTDB 
must instead allocate people according to the share of the block’s land 
area in the tract. This fallback approach ignores the fact that populations 
may not be uniformly distributed within blocks. 

The type of tract change is a principal predictor of the discrepancy 
between the LTDB and DP estimates. Note that in the case of unchanged 
boundaries, the publicly reported data in 2000 boundaries can be used 
without change for 2010 boundaries. In the case of consolidations, no 
interpolation is needed for the LTDB estimate; the tract characteristics in 

Fig. 2. Estimation error (RMSE) at epsilon values of 1–9.  
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2010 boundaries can be calculated by combining two or more 2000 
tracts. Hence any discrepancy between LTDB and DP estimates is a result 
of random noise injection in the latter. Researchers may prefer to use the 
LTDB estimates in these cases, which account for a majority of tracts. 

Variable selection. For the purpose of this study we selected several 
tract-level variables from the 2000 census. Some are short form items 
(collected for the full population). These are population, the number of 
non-Hispanic white residents, the number of persons under age 18, 
number of homeowner households, and number of occupied housing 
units. From these we calculated the percentage of non-Hispanic white 
and under 18 persons and percent of homeowners as tract-level vari-
ables. Among long form items (based on a one-in-six random sample) we 
selected the number of college-educated persons along with the number 
of persons age 25 and above to serve as the denominator for percentage 
with college education. Finally, to represent a variable that is not based 
simply on counts, we include the median family income. 

Measuring error: Geographers regularly seek to validate estimates 
or to compare the performance of alternative procedures through 
comparisons to true data (Flowerdew, Green, and Keris, 1991; Good-
child et al., 1993). We follow the validation procedure in Logan et al. 
(2016). First we report the distribution of the size of discrepancies be-
tween the true value and alternative estimates as a proportion of the 
actual value. Errors are more likely for more complex changes: split 
tracts and many to many tracts. Further, in these latter cases error is 
more likely when blocks have been subdivided. Therefore we report 
results separately for tracts that experienced these different types of 
boundary changes. 

Table 1 reports on the distribution of proportional error for each 
variable (comparing each type of estimate to the true value). Table 2 
reports a summary measure of this error, the “proportional root mean 
squared error” which is a variant of the often-used root mean squared 
error (RMSE): 

Proportional RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i((ya − yb)/yb)
2

q

√

Here ya is the estimated population of tract i, yb is the actual popu-
lation of tract i, and q is the number of tracts. This statistic sums the 
proportional differences between estimated and actual population 
counts. Because these values are squared before being summed, the 
proportional RMSE counts large percentage differences disproportion-
ately compared to small ones. In the following text we refer to this 
measure simply as RMSE. 

Modeling sources of error. The final step in this analysis is to 
examine what measurable conditions are associated with greater or 
lesser error in estimation. For this purpose and in order to make this 
analysis replicable by other researchers, we treat the DP estimate as a 
proxy for the true value, and we model the size of the discrepancy be-
tween the DP and LTDB estimates. We consider only tracts with complex 
changes, because errors are modest for tracts that experienced no 
boundary change or simply a consolidation (many merged into one). 
Such tracts account for about 21,500 or 29.7% of the 72,000+ census 
tracts in this study. 

We have identified three kinds of predictors that in principle could 
complicate estimation. These are all cases where the “stationarity” 
assumption of interpolation – that different population subgroups are 
evenly distributed among portions of tracts that are reallocated to new 
tract boundaries – may be problematic.  

• Heterogeneity. The potential for people with different backgrounds 
to be segregated from one another in different parts of an existing 
tract is greater if the population is more heterogeneous. Conversely, 
if the area is home only to a very specific category of people, it is 
more likely that similar people will be found in all parts of the tract. 
In that case the spatial stationarity assumption will not be violated. 
We measure heterogeneity by treating every population character-
istic as a dichotomy and calculating the standardized Simpson Index 
that indicates the probability of randomly drawing two people who 
are in different groups. For the analysis of error in income, we 
divided household incomes into categories above and below 
$60,000. 

• Size. When newly created tracts are smaller, they are more suscep-
tible to having a population composition that is different from 
adjacent areas. The larger the new tract, the more likely that it will 
be representative of the residents in the local community. Population 
size is logged in order to give more weight to variation among tracts 
with smaller populations, which we found have the highest estima-
tion error. Heterogeneity is based on the residents of a 2000 tract that 
was split in 2010 or, in the many-to-many case, on the aggregate of 
the initial 2000 tracts that are involved in the new tract boundary. 

Table 1 
Census tract boundaries over time: number and 2000 population of tracts 
experiencing various types of changes between 2000 and 2010.  

Type of Change Number Share Population (millions) 

No change 49,757 68.9% 200.0 
Consolidation 981 1.4% 3.5 
Splits 12,445 17.2% 43.4 

Without divided blocks 6138 8.5% 21.8 
With divided blocks 6307 8.7% 21.7 

Many to many 9022 12.5% 32.5 
Without divided blocks 2279 3.2% 8.1 
With divided blocks 6743 9.3% 24.4 

Total 72,205 100.0% 279.3 

Source: Logan et al., 2016. 

Table 2 
Error (RMSE) in LTDB and DP estimates by type of tract change between 2000 and 2010.   

N of tracts Total population % under 18 % NH white % college % owner Median income 

LTDB vs. true        
All tracts 71,628 1.305 5.743 6.742 12.160 11.230 0.169 
Unchanged 49,639 0.132 0.163 0.069 0.172 1.232 0.042 
Consolidated 979 0.047 0.074 0.152 0.125 0.069 0.098 
Split, no divide 6087 0.063 7.025 11.910 16.340 21.740 0.202 
Split with divided blocks 6159 3.669 11.100 11.520 19.250 15.490 0.379 
Many to many no divide 2243 0.079 1.072 25.250 12.410 15.950 0.520 
Many to many with divided blocks 6521 2.419 14.120 4.704 31.190 24.880 0.184 

DP vs. true        
All tracts 71,628 0.007 1.289 0.803 1.972 3.727 0.019 
Unchanged 49,639 0.002 0.493 0.399 1.205 2.378 0.014 
Consolidated 979 0.000 0.006 0.015 0.072 0.018 0.098 
Split, no divide 6087 0.003 1.976 1.887 1.411 7.877 0.017 
Split with divided blocks 6159 0.016 3.097 1.161 2.850 2.669 0.022 
Many to many no divide 2243 0.001 0.014 1.027 1.992 8.102 0.030 
Many to many with divided blocks 6521 0.018 1.925 0.958 4.558 4.728 0.031  
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• Growth. Rapid population growth often involves a change in the 
composition of residents, because new residents may be unlike 
established residents. We cannot directly measure how fast each 
newly established tract area is growing, because we are only esti-
mating its population at one time point. However, communities in 
rapidly growing counties may be more susceptible to changes in 
composition that could result in different kinds of people being 
allocated to different new tract areas. 

It would be desirable also to be able to take into account information 
about the spatial distribution of different categories of residents within 
the origin tract(s). The LTDB does this in the population interpolation 
component of estimation, relying on block-level population counts. 
However, this is not feasible for most of the dimensions of neighborhood 
change that researchers wish to study, because they draw on sample data 
that are not reported at the block level. 

6. Results 

6.1. Errors in LTDB and DP estimates 

Table 2 summarizes the level of errors in the LTDB and DP estimates 
in terms of RMSE for every type of tract and for all six population var-
iables. The key finding with respect to the purpose of this study is that 
the LTDB estimates of total population are much better than estimates of 
the under 18, non-Hispanic white, college-educated, and homeowner 
populations. This differential is small for unchanged and consolidated 
tracts. Here no interpolation was conducted for the LTDB; data were 
taken directly from the published tabulations. The small discrepancies 
between the true values and LTDB estimates likely stems from small 
errors made by the Census Bureau when assigning the 2000 respondents 
to 2010 tract areas. Larger discrepancies arise for tracts with more 
complex boundary changes. 

The pattern for LTDB estimates is not uniform. First, we note that 
estimates for median income are generally as good, often better (re-
flected in a lower RMSE), than for total population. We might infer that 
tracts where boundary changes are made tend to be more internally 
homogeneous with respect to income than with respect to other social 
characteristics; unfortunately, we cannot test this interpretation. Second 
and surprisingly, in some cases the RMSE for tracts with subdivided 
blocks is lower than for those without divides. The best example of this is 
for estimates of non-Hispanic whites, where the RMSE for many to many 
tracts is six times higher for those with no divides than those with 
divides. 

Now consider the DP estimates. The motivating question is whether 
noise injection, despite introducing random error into estimates, offers a 
useful alternative to the interpolation methods underlying systems such 
as the LTDB. Table 2 reveals that it is not only a useful alternative, but in 
fact it is clearly superior. The RMSE for DP estimates for population and 
median income are all below 0.10, a small improvement even upon the 
very accurate LTDB estimates. It performs least well for percent home-
owner, but even here the overall RMSE is 3.7 for DP estimates compared 
to 11.2 for LTDB estimates. In many comparisons for unchanged and 
consolidation tracts the error in DP estimates is greater than the error in 
LTDB estimates, although both are very accurate. This is to be expected, 
because random noise was introduced into the DP estimates while no 
interpolation was employed for the LTDB estimates. But in all compar-
isons of estimates for the tracts with more complex changes, for every 
variable, the DP estimates have less error. 

The RMSE is a summary statistic of how well an estimator performs, 
on average. It does not reveal how much variation there is in the esti-
mates for different census tracts. For many researchers it may be hard to 
interpret. How good is an RMSE of under 1.0, and how bad is an RMSE of 
over 10? To deal with these concerns we have also calculated how the 
disparity between LTDB or DP estimates with the true value is distrib-
uted across census tracts. 

Table 3 reports these distributions for a variable on which we 
conclude that both estimators perform well. Here tracts are categorized 
by the proportional error in the estimates, ranging from exactly correct 
to an error of 10% or more (i.e., the ratio of the estimated value to the 
true value is greater than or equal to 1.10 or less than or equal to 0.90). A 
typical tract with a true population of 3500 and in the highest category 
of disparity would have an estimate that is 350 or more above or below 
that value. Consider first the DP estimates. Very few exactly equal the 
true value (because error has been intentionally inserted), while almost 
all are within 1% of the true value. This distribution yields an RMSE of 
less than 0.02 for every type of tract. 

The distribution of disparities is quite different for the LTDB esti-
mates of population. First, in a substantial share of cases (around 
10–15% for unchanged and consolidated tracts (though much lower for 
tracts where boundary changes involved subdivided blocks), the LTDB 
estimate is exact. Another very large share (in the 55–70% range) are 
within 1% of the true value. This is why the overall RMSE is just over 
1.0. However, in this case there are also many outliers. At the extreme 
end of the distribution, looking at tracts with block subdivisions, as 
many as six or seven percent of tracts have an error of 10% or more in 
the LTDB estimate. This variation indicates that even when an estimator 
has a high level of accuracy overall, there may be a considerable number 
of tracts with poorer estimates. A further cause for concern is that error 
in LTDB estimates is not random, unlike error in DP estimates. 

Now let us consider a variable where the LTDB was less successful, 
the estimates of college educated residents (see Table 4). In this case no 
DP estimate is exactly correct, but upwards of 97% of estimates are 
within 1% of the true value. At the upper end of error, for many to many 
tracts with divided blocks, 1.1% of estimates have an error as high as 
10%. For these tracts the corresponding RMSE is 4.6, although the 
overall RMSE is under 2.0. 

The results for LTDB estimates give more cause for concern. On the 
positive side, the LTDB estimate for about a third of unchanged and 
consolidation tracts is exact. About 40% more are within 1%. Even for 
these “uncomplicated” tracts there are outliers, but the distribution 
corresponds to RMSE of less than 0.2. On the negative side, large shares 
of estimates for tracts with complicated boundary changes have errors of 
more than 10% – as high as 60% for split tracts. In a set of split tracts 
with a true value of 40% college educated, a majority of them would 
have estimates of 44% or more. This situation corresponds to RMSE in 
the 15–20 range. 

Comparable tables are presented in Appendix A for the under 18, 
non-Hispanic white, and homeowner shares and for median household 
income. All these tables reveal the same sharp contrast in performance 
of the LTDB and DP estimates shown here for the college educated 
population. 

6.2. Predicting estimation error 

Although the DP estimates analyzed here are now publicly disclosed 
and available for use, research on neighborhood change remains 
dependent on interpolation-based estimates for other neighborhood 
characteristics. We have shown that such estimates should be viewed 
with caution. We now consider what are the conditions associated with 
smaller or greater error in the estimates. It is prudent to use extra vigi-
lance with interpolated data, searching especially for outliers that could 
represent poor estimates. Data providers should clearly identify which 
tracts are more subject to error from boundary changes because they 
involved splits or recombinations. Beyond that there are situations 
where it seems more likely that local communities are susceptible to 
distorted estimates from interpolation. 

To evaluate the importance of these predictors, we treat the DP es-
timate as though it were the true value, and measure the absolute value 
of the discrepancy between it and the LTDB estimate. The same analysis 
could be carried out within the FSRDC with the original data, but there 
could be difficulties in disclosure review, because the resulting models 
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would provide an indirect way to determine the true values that the 
Census Bureau will not release. The DP estimate is a useful proxy for the 
true value, since we showed above that it is typically close to the true 
value and the error in the estimate is random by design. For variables 
expressed as a percentage, the discrepancy between the DP and LTDB 
estimate is the absolute value of the proportional error (the difference in 
the two estimates divided by the DP estimate). For income, the 
discrepancy is simply the absolute value of the difference in the two 
estimates. 

Table 5 presents the results of OLS regressions predicting the size of 
the discrepancy for all tracts that experienced a complex boundary 
change. The analysis is presented in two steps. The first step (Model 1) 
includes only the type of change, using the categories applied above. The 
second step adds heterogeneity in 2000 on the population characteristic 
that is being predicted, tract population size in 2010 (including all tracts 
that contribute to the 2000 estimate), and county population growth. 
Measures of these population predictors are mean-centered. 

The intercept in every model is the average estimation error for a 
split tract with no divided blocks, with the average heterogeneity on the 
predicted characteristic, average size, and in a county with average 
population growth. The intercepts are similar in Model 1 and Model 2, 
and they show that in the average reference tract the LTDB estimate is 
about 2% different from the DP estimate for under 18 population share, 
above 4% different for white and college share, and nearly 8% different 
for homeowner share. The average estimate of median household in-
come has a difference of about $6000. 

There are significant differences among types of tracts. The effect of 
divided blocks (directly assessed for split tracts) is significant only for 

homeowner share and income. For all estimates, errors are smaller in 
many-to-many tracts than in split tracts. In tracts that experienced these 
recombinations the negative coefficients reduce the error by a third or 
more compared to split tracts. This finding is not directly comparable 
with results from previous tables, but it brings out a different pattern, 
giving more emphasis to splits vs recombination than to divided blocks 
within tracts. 

In further analysis not presented here, we found that many of the 
recombinations involved very small adjustments. If we treated tracts as 
“changed” only if more than 5% of land area was exchanged (vs the 1% 
in prior studies), the result would be reclassifying a substantial share of 
“many-to-many” tracts to unchanged. Among the remaining tracts in 
this category the estimation errors were higher than we found before, 
but they were still smaller than in split tracts. In the course of this 
reexamination, we inspected examples of boundary changes in greater 
detail, even drawing on a database of non-residential land uses (parks, 
golf courses, and universities) to identify the rationale for redrawing 
boundaries and the implications for estimation by interpolation. For 
example, when one new tract derived from a split is devoted primarily to 
a golf course, it is likely to have fewer residents than one would have 
estimated; if it houses a university, it is likely to have an unusual pop-
ulation mix. Our impression is that in many cases an estimate could be 
improved if more information of this type were taken into account, and 
that is the basis for what geographers refer to as “dasymetric” methods 
that rely on ancillary data. Unfortunately, there is not a standard source 
or guide to use such data at a national scale. 

Other predictors in Table 5, especially tract population size, are also 
useful. Although the type of boundary change is statistically significant, 

Table 3 
Distribution of errors in LTDB and DP estimates: total population.   

exact <1% 1–2.99% 3–4.99% 5–10% >10% Total 

LTDB vs. true        
All tracts 12.3% 68.3% 11.9% 3.0% 2.4% 2.1% 100.0% 
Unchanged 14.0% 71.4% 10.0% 2.1% 1.5% 0.9% 100.0% 
Consolidated 11.2% 66.6% 13.3% 3.7% 2.6% 2.7% 100.0% 
Split, no divide 16.9% 65.9% 10.7% 2.7% 2.3% 1.6% 100.0% 
Split with divided blocks 1.9% 60.6% 18.7% 6.2% 6.3% 6.4% 100.0% 
Many to many no divide 20.0% 61.4% 10.6% 3.3% 2.5% 2.3% 100.0% 
Many to many with divided blocks 2.8% 56.7% 21.4% 6.7% 5.4% 7.1% 100.0% 

DP vs. true        
All tracts 0.1% 99.8% 0.1% 0.0% 0.0% 0.0% 100.0% 
Unchanged 0.1% 99.9% 0.0% 0.0% 0.0% 0.0% 100.0% 
Consolidated 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 100.0% 
Split, no divide 0.1% 99.7% 0.1% 0.1% 0.0% 0.0% 100.0% 
Split with divided blocks 0.1% 99.7% 0.1% 0.1% 0.0% 0.0% 100.0% 
Many to many no divide 0.0% 99.9% 0.1% 0.0% 0.0% 0.0% 100.0% 
Many to many with divided blocks 0.1% 99.3% 0.4% 0.1% 0.0% 0.0% 100.0%  

Table 4 
Distribution of errors in LTDB and DP estimates: percent college educated.   

exact <1% 1–2.99% 3–4.99% 5–10% >10% Total 

LTDB vs. true        
All tracts 26.5% 34.9% 13.5% 4.8% 6.2% 14.1% 100.0% 
Unchanged 36.5% 43.0% 13.8% 3.3% 2.3% 1.2% 100.0% 
Consolidated 30.6% 38.8% 16.5% 5.4% 4.8% 3.8% 100.0% 
Split, no divide 0.1% 4.8% 8.2% 8.7% 18.9% 59.2% 100.0% 
Split with divided blocks 0.0% 5.1% 8.5% 8.4% 17.8% 60.0% 100.0% 
Many to many no divide 12.3% 19.6% 16.5% 9.2% 13.0% 29.4% 100.0% 
Many to many with divided blocks 4.3% 34.5% 19.1% 7.6% 10.8% 23.7% 100.0% 

DP vs. true        
All tracts  98.9% 0.7% 0.1% 0.0% 0.3% 100.0% 
Unchanged  99.2% 0.6% 0.1% 0.0% 0.1% 100.0% 
Consolidated  98.2% 1.3% 0.1% 0.0% 0.4% 100.0% 
Split, no divide  98.6% 0.7% 0.1% 0.1% 0.4% 100.0% 
Split with divided blocks  98.1% 0.9% 0.1% 0.1% 0.8% 100.0% 
Many to many no divide  97.8% 1.3% 0.2% 0.0% 0.6% 100.0% 
Many to many with divided blocks  97.4% 1.2% 0.2% 0.1% 1.1% 100.0%  
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this set of dummy variables explains only a modest share (1%–3%) of 
variance in estimation error. The explained variance in Model 2 rises to a 
more appreciable 20–30%. Most coefficients are consistent with our 
expectations, but they represent very small effects.  

• Smaller tracts have larger estimation error for all estimates, and this 
effect is much greater for tracts that are far from the average size of 
around 3700 persons. As an example, we have calculated the pre-
dicted discrepancy for the under-18 share, where the coefficient is 
smaller than for other population estimates. For a tract with only 100 
residents, the net discrepancy (taking into account the intercept), is 
more than 8%, with 1000 residents it is around 4%, and with average 
size of 3700 it is only 2%. 

• Greater heterogeneity within tracts is associated with greater esti-
mation error for all estimates except under-18 share of residents. 
Heterogeneity ranges from 0 to a maximum of 0.50, average values 
for these variables tend to be around 0.30 with a standard deviation 
of around 0.15, and value that is 0.10 above average would represent 
a substantial difference. For such a case, the estimation error would 
decline slightly for under-18 share (0.1 * 1.37) or 0.14%. That is a 
negligible difference in an unexpected direction. But it would rise 
more for other outcomes, about 1% for non-Hispanic white and 
college-educated share, 2% for owner share, and $1500 for median 
income.  

• Faster population growth at the county level is associated with larger 
errors (with the exception that this coefficient is not significant for 
non-Hispanic white share). The average county grew by 15% over 
the decade, and a growth rate of ten points above that would be 
substantial. That rate of growth would be associated with less than 
an 0.5% increase in the estimation error for the four estimates 
expressed in percentages and a $180 greater error in median income. 

7. Conclusion 

The results are clear. Although interpolated estimates of tract “total 
population” are very reliable, there is even less error in the DP estimates. 
For other demographic characteristics, interpolation introduces 
considerable error, while the DP estimates are generally very close to the 
true values. How great is the problem? In a substantial share of cases for 
tracts with complex boundary changes, the LTDB estimates differ from 
the true value by five or ten percent or more. 

Fortunately, though they are not random, the LTDB estimates are not 
systematically biased. Also, despite error in estimation, in a standard 
multivariate cross-sectional analysis the interpolated measures serve 
approximately as well as DP estimates, because the two are very highly 
correlated. In data covering all tracts in the nation, the correlation be-
tween these estimates is in the range of .95 or higher. Unfortunately, 
interpolated measures are more problematic for studies of neighborhood 
change, which is the situation in which they are needed. Of the variables 
studied here, the most problematic example is the estimate of owner- 
occupied housing share. The cross-sectional correlation between the 
LTDB and DP estimates in 2000 is near-perfect, 0.97. However, if we 
calculate the change in the percentage of owners between 2000 and 
2010 (using the published data for 2010), the correlation between the 
change based on the LTDB and DP estimates is only 0.66. By implication, 
in models where change in one characteristic is modeled in relation to 
change in others, the estimated coefficients can potentially vary sub-
stantially depending on which set of estimates is used. 

Aside from problems with measuring change, faulty point estimates 
can also affect other aspects of the cross-sectional distribution of values. 
Like sampling variability, random error from interpolation will increase 
the variance of observed characteristics across census tracts. It will also 
introduce noise into the spatial distribution of population variables, 
weakening measures of spatial clustering. Further research is needed to 
understand these effects. 

On the basis of our findings, we offer two recommendations. First, Ta
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researchers should exercise caution in the use of interpolated data, 
especially for census tracts that have undergone complex boundary 
changes over time. Second, to the extent possible, future standard 
harmonized databases should rely on DP estimates that are feasible now 
for 2000–2010 and seek to create comparable estimates for other years. 
It is not yet known whether the Bureau of the Census will allow DP es-
timates to be disclosed for a broader range of variables. Short of that, 
there are steps that could be taken to improve interpolated estimates. 
One change is to apply the spatial stationarity assumption differently for 
all full-count decennial census variables. Instead of allocating all sub-
groups of the population to new tract areas in the same proportion as the 
total population, their allocation could be based on the published block- 
level counts for each subgroup. A more complex procedure would be 
needed for other census characteristics such as education level or 
occupation that are based on sample data, and for which no data are 
published at the block level. More research is needed on how the full 
count information for a few variables can be leveraged to improve es-
timates of others that are known to be correlated with them. 

In the short term most researchers will need to rely on the existing 
interpolated estimates such as those provided by the LTDB and NCDB. 
The key recommendation is to be aware that these data are estimates, as 
are all the sample-based population counts that are provided by the 
decennial census and ACS. As such they are subject to two main sources 
of error. The first is sampling variation. The Census Bureau makes 
extensive efforts to improve the precision of estimates through sampling 
procedures and complex weighting to correct for known bias in sample 
composition. Yet these steps do not overcome the inherent variability of 
sample results, which has been exacerbated by the use of smaller sam-
ples in the ACS (even when pooled over five years) than were drawn for 
the decennial census long-form questions through 2000. This source of 
unreliability in sample-based estimates is expressed in the margins of 
error that are now more visibly published by the Census Bureau. For 
studies involving large samples of census tracts, the problem is limited 
by the tendency for errors to even out. The problem is greater for studies 
that focus on findings for smaller areas (with relatively few tracts) or for 
local studies of characteristics of specific tracts. In such research, stan-
dard advice is to be aware of outliers that may be due to poor estimation, 
to be especially attentive to data for tracts with small populations (even 
to omit such tracts from the analysis), or if possible to shift research to a 

larger spatial scale. 
In the cases of estimates for harmonized tract boundaries, as we 

studied here, there are additional considerations for the large minority 
of census tracts that involve boundary changes. Estimates for these tracts 
are imperfect, especially for split tracts, and even more so where census 
blocks have been divided between two new tracts. Error from interpo-
lation is greater for smaller census tracts, which compounds the problem 
of sampling variability in small tracts. Error is greater in more hetero-
geneous tracts, and in faster growing counties. It should be standard 
practice to scan data for outliers, such as tracts where estimates at time 1 
differ greatly from those at time 2, or where the estimate for a given 
characteristic appears out of line with the estimate for another charac-
teristic that is expected to be highly correlated with it. Knowing which 
tracts have greater potential for estimation error can improve identifi-
cation of aberrant cases. 
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Appendix A 

These tables present the distribution of errors in the LTDB and DP estimates for four variables.  

Appendix Table 1 
Distribution of errors in LTDB and DP estimates: percent under 18   

exact <1% 1–2.99% 3–4.99% 5–10% >10% Total 

LTDB vs. true        
All tracts 9.5% 63.2% 9.2% 4.4% 5.8% 7.9% 100.0% 
Unchanged 13.0% 78.5% 5.8% 1.2% 0.8% 0.7% 100.0% 
Consolidated 10.0% 73.1% 9.6% 2.6% 2.8% 1.9% 100.0% 
Split, no divide 0.0% 10.0% 18.2% 14.9% 23.2% 33.7% 100.0% 
Split with divided blocks 0.0% 11.7% 18.1% 14.7% 23.4% 32.0% 100.0% 
Many to many no divide 5.5% 40.6% 17.3% 8.6% 10.6% 17.3% 100.0% 
Many to many with divided blocks 1.6% 51.5% 14.8% 8.1% 10.0% 14.0% 100.0% 

DP vs. true        
All tracts  99.4% 0.3% 0.1% 0.1% 0.1% 100.0% 
Unchanged  99.8% 0.1% 0.0% 0.0% 0.1% 100.0% 
Consolidated  99.5% 0.3% 0.1% 0.1% 0.0% 100.0% 
Split, no divide  98.9% 0.5% 0.2% 0.1% 0.3% 100.0% 
Split with divided blocks  98.6% 0.7% 0.2% 0.2% 0.3% 100.0% 
Many to many no divide  99.2% 0.4% 0.2% 0.1% 0.1% 100.0% 
Many to many with divided blocks  98.0% 0.8% 0.2% 0.3% 0.6% 100.0%   
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Appendix Table 2 
Distribution of errors in LTDB and DP estimates: percent non-Hispanic white   

exact <1% 1–2.99% 3–4.99% 5–10% >10% Total 

LTDB vs. true        
All tracts 9.5% 67.9% 8.3% 3.5% 4.3% 6.5% 100.0% 
Unchanged 13.1% 80.6% 3.8% 0.9% 0.8% 0.7% 100.0% 
Consolidated 9.9% 69.9% 10.4% 3.3% 3.2% 3.4% 100.0% 
Split, no divide 0.0% 22.0% 21.9% 12.2% 16.1% 27.8% 100.0% 
Split with divided blocks 0.0% 26.9% 22.8% 11.7% 15.7% 22.9% 100.0% 
Many to many no divide 5.5% 45.7% 14.8% 7.1% 8.7% 18.2% 100.0% 
Many to many with divided blocks 1.6% 60.2% 13.5% 5.9% 7.4% 11.5% 100.0% 

DP vs. true        
All tracts  99.0% 0.7% 0.2% 0.1% 0.1% 100.0% 
Unchanged  99.0% 0.7% 0.2% 0.1% 0.0% 100.0% 
Consolidated  96.6% 2.9% 0.1% 0.1% 0.3% 100.0% 
Split, no divide  99.4% 0.4% 0.0% 0.1% 0.1% 100.0% 
Split with divided blocks  99.2% 0.5% 0.1% 0.1% 0.1% 100.0% 
Many to many no divide  98.5% 1.1% 0.2% 0.1% 0.1% 100.0% 
Many to many with divided blocks  98.5% 0.9% 0.3% 0.1% 0.1% 100.0%   

Appendix Table 3 
Distribution of errors in LTDB and DP estimates: percent homeowner   

exact <1% 1–2.99% 3–4.99% 5–10% >10% Total 

LTDB vs. true        
All tracts 12.1% 62.8% 7.3% 3.5% 4.8% 9.6% 100.0% 
Unchanged 16.6% 77.4% 3.6% 0.9% 0.8% 0.7% 100.0% 
Consolidated 14.7% 74.4% 5.7% 1.6% 1.7% 1.8% 100.0% 
Split, no divide 0.1% 10.4% 16.0% 11.1% 18.4% 44.1% 100.0% 
Split with divided blocks 0.0% 13.5% 19.1% 12.9% 19.1% 35.4% 100.0% 
Many to many no divide 6.8% 38.7% 14.9% 7.0% 9.0% 23.7% 100.0% 
Many to many with divided blocks 1.9% 53.4% 13.4% 6.4% 7.9% 17.0% 100.0% 

DP vs. true        
All tracts  98.9% 0.6% 0.2% 0.2% 0.2% 100.0% 
Unchanged  99.3% 0.4% 0.1% 0.1% 0.1% 100.0% 
Consolidated  98.4% 0.6% 0.3% 0.5% 0.2% 100.0% 
Split, no divide  98.4% 0.7% 0.3% 0.2% 0.4% 100.0% 
Split with divided blocks  98.4% 0.8% 0.2% 0.3% 0.4% 100.0% 
Many to many no divide  97.4% 1.3% 0.5% 0.4% 0.3% 100.0% 
Many to many with divided blocks  97.1% 1.3% 0.3% 0.5% 0.8% 100.0%   

Appendix Table 4 
Distribution of errors in LTDB and DP estimates: median household income   

exact <1% 1–2.99% 3–4.99% 5–10% >10% Total 

LTDB vs. true        
All tracts 0.1% 26.7% 34.6% 14.9% 12.3% 11.4% 100.0% 
Unchanged 0.2% 32.7% 41.1% 15.4% 8.8% 1.8% 100.0% 
Consolidated 0.0% 20.2% 32.9% 17.1% 16.8% 13.1% 100.0% 
Split, no divide 0.0% 7.2% 12.4% 11.9% 23.9% 44.7% 100.0% 
Split with divided blocks 0.0% 7.5% 13.6% 12.0% 23.6% 43.3% 100.0% 
Many to many no divide 0.1% 18.3% 25.4% 14.3% 17.5% 24.6% 100.0% 
Many to many with divided blocks 0.0% 21.4% 29.2% 15.8% 15.2% 18.4% 100.0% 

DP vs. true        
All tracts 0.0% 81.8% 14.7% 2.2% 0.8% 0.4% 100.0% 
Unchanged  83.3% 14.1% 1.9% 0.6% 0.2% 100.0% 
Consolidated 0.0% 77.0% 17.2% 3.9% 1.2% 0.7% 100.0% 
Split, no divide 0.0% 78.0% 17.1% 2.9% 1.4% 0.6% 100.0% 
Split with divided blocks 0.0% 77.8% 16.9% 2.9% 1.3% 1.0% 100.0% 
Many to many no divide 0.0% 79.9% 14.7% 2.8% 1.7% 0.9% 100.0% 
Many to many with divided blocks 0.0% 79.5% 15.2% 2.6% 1.3% 1.3% 100.0%  
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